Хромосомные перестройки (аберрации); Студопедия

Хромосомные мутации

Хромосомные мутации (перестройки, или аберрации) — это изменения в структуре хромосом, которые можно выявить и изучить под световым микроскопом.

Известны перестройки разных типов:

  1. нехватка, или дефишенси, — потеря концевых участков хромосомы;
  2. делеция — выпадение участка хромосомы в средней ее части;
  3. дупликация — двух- или многократное повторение генов, локализованных в определенном участке хромосомы;
  4. инверсия — поворот участка хромосомы на 180°, в результате чего в этом участке гены расположены в последовательности, обратной по сравнению с обычной;
  5. транслокация — изменение положения какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может изменить свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую.

При дефишенси, делециях и дупликацияхизменяется количество генетического материала. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание —синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами), обусловлен гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается сильным нарушением роста и умственной отсталостью. Обычно дети с таким синдромом рано умирают, но некоторые доживают

Геномные мутации — изменение числа хромосом в геноме клеток организма. Это явление происходит в двух направлениях: в сторону увеличения числа целых гаплоидных наборов (полиплоидия) и в сторону потери или включения отдельных хромосом (анеуплоидия).

Полиплоидия — кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называются триплоидными (Зn), тетраплоидными (4n), гексанло-идными (6n), октаплоидными (8n) и т. д.

Чаще всего полиплоиды образуются при нарушении порядка расхождения хромосом к полюсам клетки при мейозе или митозе. Это может быть вызвано действием физических и химических факторов. Химические вещества типа колхицина подавляют образование митотического веретена в клетках, приступивших к делению, в результате чего удвоенные хромосомы не расходятся и клетка оказывается тетрагшоидной.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum). Род пшеница (Triticum) представляет ряд, члены которого имеют 34, 28 и 42 хромосомы.

Полиплоидия приводит к изменению признаков организма и поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у растительных организмов весьма широко распространены гермафродитизм (самоопыление), апомиксис (партеногенез) и вегетативное размножение. Поэтому около трети видов растений, распространенных на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85% полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, а в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они широко распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии.

Анеуплоидия, или гетероплодия, — явление, при котором клетки организма содержат измененное число хромосом, не кратное гаплоидному набору. Анеуплоиды возникают тогда, когда не расходятся или теряются отдельные гомологичные хромосомы в митозе и мейозе. В результате нерасхождения хромосом при гамето-генезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 1n — 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n — 2, или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + х, или полисомики.

Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей, родившихся от матерей старше 38 лет, вероятность анеуплоидии повышена (до 2,5%). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко. Это обусловлено тем, что полиплоидия, вызывая изменение соотношения половых хромосом и аутосом, приводит к нарушению конъюгации гомологичных хромосом и тем самым затрудняет определение пола. В результате такие формы оказываются бесплодными и маложизнеспособными.

Хромосомные мутации, их типы и значение.

В отличие от генных мутаций хромосомные мутации большей частью являются межгенными перестройками. Они делятся на две группы: внутрихромосомные и межхромосомные.

Внутрихромосомные мутации подразделяют на следующие типы.

1) Дефишенси (концевые нехватки);

Пример: синдром кошачьего крика у человека связан кс концевой нехваткой в одной из 5 пары хромосом.

2) Делеции (нехватки внутренних частей хромосом).

В результате нехваток некоторые гены в кариотипе остаются в гемизиготном состоянии, что может привести к фенотипическому проявлению рецессивных аллелей.

В ряде случаев возможно появление новых признаков в результате нехваток. 3) Дупликации (удвоения) и амплификации (многократные умножения части хромосомы). Основным механизмом образования дупликаций является неравный кроссинговер, в результате которого хромосомы обмениваются неодинаковыми по размеру участками.

4) Инверсии (перевертывания участка хромосомы на 180°). Наиболее часто встречающийся в природных популяциях тип хромосомных перестроек. Разделяются на перицентрические (захватывающие центромеру) и парацентрические (не включающие центромеру в инвентированый участок).

Генетически инверсии проявляются как запиратель кроссинговера, если инверсия находиться в гетерозиготе. Строго говоря, кроссинговер у гетерозигот не подавлен, однако последствия его ведут к образованию нежизнеспособных спор у растений или зигот у животных, так как в результате одинарного кроссинговера из пары конъюгирующих гомологичных хромосом образуются одна дицентрическая, а другая ацентрическая хромосомы, которые затем элиминируют. Поэтому из четырех хроматид, нормальные гаметы образуют лишь две, не вступавшие в кроссинговер.

Читайте также:  Пермский» филиал ФГУП Московское ПрОП Минтруда России - Протезы нижних конечностей

Внутрихромосомные перестройки (кроме дупликаций) обычно летальны в гомозиготном состоянии, т.к. часто точки разрывов затрагивают жизненно важные гены или вследствие “эффекта положения” (гены в новом локусе хромосом перестают нормально функционировать). Нелетальны в гомозиготе лишь некоторые очень малые изменения (микроделеции и микроинверсии). Цитогенетически делеции определяются по образованию одинарных петель в пахитене и мостов между гомологами в анафазе мейоза, инверсии по образованию двойных петель, дефишенси диагностируются по различиям в длине гомологичных хромосом. Дупликации (и амплификации) идентифицируются на гигантских хромосомах слюнных желез дрозофилы по тщательному анализу хромомерного рисунка.

К межхромосомным перестройкам относят транслокации – перемещения части одной хромосомы на другую (негомологичную ей), которые возникают в результате реципрокного обмена участками негомологичных хромосом. Генетически они дифференцируются по изменению групп сцепления: гены, наследовавшиеся независимо, вдруг начинают наследоваться сцеплено. Цитологически — по возникновению петель в бивалентах обоих хромосом, между которыми произошла транслокация). Одним из вариантов транслокаций являются т.н. робертсоновские транслокации, приводящие к слиянию двух центромер акроцентрических хромосом, с образованием хромосомы имеющей два плеча (общее число хромосом в геноме уменьшается на одну).

Промежуточное положение между межхромосомными и внутрихромосомными перестройками занимают транспозиции – изменения локализации небольших участков генетического материала, включающих один или несколько генов. Транспозиции могут происходить как между негомологичными хромосомами, так и в пределах одной хромосомы. При этом реципрокного обмена между генами не происходит. Осуществляются с помощью мигрирующих генетических элементов (транспозонов), которые могут переносить участки хромосом и реципрокно встраиваться в определенные сайты генома, где расположены копии соответствующих транспозонов.

При всех типах перестроек изменяется лишь положение генов в хромосомах и лишь при дупликации или делеции ведут к изменению числа генов, хотя сами гены могут и не изменяться (за исключением случаев, когда разрыв затрагивает сам ген). Тем не менее, фенотипический эффект хромосомных перестроек наблюдается очень часто. Это объясняется “эффектом положения”, который заключается в изменении фенотипа, вследствие того, что переместившиеся гены оказываются в новом генотипическом окружении. Данное явление показывает важную роль системы генотипа в определении признаков.

Поможем написать любую работу на аналогичную тему

1.2.4 Хромосомные мутации

Различные клетки одного организма и различные особи одного вида обладают, как правило, одинаковым числом хромосом, за исключением гамет, в которых вдвое меньше хромосом, нежели в соматических клетках. Кроме того, число гомологичных и порядок генов в них также, как правило, совпадают в различных клетках и у разных представителей одного вида. Однако число хромосом, их размер и организация у разных видов сильно варьирует. Гаплоидный геном большинства животных содержит около 2.109 п.н. (пар нуклеотидов); у некоторых насекомых и примитивных хордовых это число составляет лишь 108, тогда как у некоторых амфибий, напротив, достигает 1011 п.н. на одно ядро. Количество ДНК в клетках растений колеблется в еще более широких пределах. ДНК входит в состав хромосом, число которых может сильно варьировать: в клетках нематоды Parascaris univalensсодержится по одной паре хромосом, тогда как у бабочки Lysandra atlantica число хромосом составляет примерно 220, а у папоротника Ophioglossum reticulayum превышает 600.

В процессе эволюции организма изменяться может не только число и величина хромосом, но и их организация: отдельные участки хромосом могут менять свое расположение внутри хромосомы и даже переходить от одних хромосом к другим. Изменения в числе, размере и организации хромосом называют хромосомными мутациями, перестройками или аберрациями [Айала]. Они представляют собой перемещения генетического материала, приводящие к изменению структуры хромосом в пределах кариотипа. В такие перестройки могут быть вовлечены участки одной хромосомы или разных — негомологичных — хромосом. В соответствии с этим критерием выделяют аберрации внутрихромосомные и межхромосомные (рис. 6).

Хромосомные перестройкивнутрихромосомныемежхромосомныедефишенси (конце-вые нехватки)делеции (внутрен-ние нехватки)дупликацииинверсиитранспозициитранслокацииРис. 6. ? Типы хромосомных перестроек

Хромосомные перестройки часто приводят к различным фенотипическим изменениям, которые объясняются локализацией точек разрывов внутри или вблизи тех или иных генов [8].

Классификация хромосомных мутаций:

А. Изменения в структуре хромосом. Такие изменения могут затрагивать число генов в хромосомах (делеции и дупликации) и локализацию генов в хромосомах (инверсии и транслокации).

. Делеция, или нехватка. Утрачен участок хромосомы.

. Дупликация, или удвоение. Один из участков хромосомы представлен в хромосомном наборе более одного раза.

. Инверсия. В одном из участков хромосомы гены расположены в последовательности, обратной по сравнению с нормальной. Инвертированный участок хромосомы может включать или не включать центромеру; в первом случае инверсия называется перицентрической (т.е. охватывающей центромеру), а во втором — парацентрической (т.е. «околоцентромерной»).

. Транслокация. Изменено положение какого-либо участка хромосомы в хромосомном наборе. К наиболее распространенному типу транслокаций относятся реципрокные, при которых происходит обмен участками между двумя негомологичными хромосомами. Участок хромосомы может также изменять свое положение и без реципрокного обмена, оставаясь в той же хромосоме или включаясь в какую-то другую. Транслокации такого типа иногда называют транспозициями.

Б. Изменения в числе хромосом. При изменениях такого рода в одних случаях (слияния и разрывы) общее количество наследственного материала остается неизменным, а в других (анеуплоидия, моноплоидия и полиплоидия) — изменяется.

. Центрическое слияние. Две негомологичные хромосомы сливаются в одну.

. Центрическое разделение. Одна хромосома делится на две, при этом должна образоваться новая центромера, в противном случае хромосома без центромеры утрачивается при клеточном делении.

. Анеуплоидия. В нормальном хромосомном наборе либо отсутствует одна и более хромосом, либо присутствует одна или более добавочных хромосом.

. Моноплоидия и полиплоидия. Число наборов негомологичных хромосом отличается от двух [Айала].

Делеции и дефишенси

Делецией, или нехваткой, называется потеря некоторого участка хромосомы. Именно делеция была первым примером хромосомной перестройки, обнаруженным в 1917 г. Бриджесом с помощью генетического анализа. Эта делеция фенотипически проявляется в зазубренности края крыла у дрозофилы называется мутацией Notch. Показано, что данная мутация сцеплена с полом, доминанта, в гомозиготном состоянии летальна. Самки, гетерозиготные по Notch, имеют мутантный фенотип, а гомозиготные по этой мутации самки и гемизиготные самцы нежизнеспособны. Аллель white в присутствии Notch в гомологичной хромосоме ведет себя как доминантный. Другие рецессивные гены, расположенные по соседству с white в Х-хромосоме, также становятся как бы «доминантными» в присутствии Notch. Такая кажущаяся доминантность рецессивных генов называетсяпсевдодоминантностью, поскольку она возникает лишь при утрате некоторого участка гомологичной хромосомой, в результате чего отсутствует аллель, комплементарный рецессивной мутации. Псевдодоминирование служит одним из способов выявления делеций [1, 11].

Читайте также:  Что такое инсулиновый индекс продуктов питания и как его использовать

Делеции обычно летальны в гомозиготе, что указывает на выпадение каких-либо жизненно важных генов. Очень короткие делеции могут не нарушать жизнеспособности в гомозиготе.

Концевые нехватки, или дефишенси, устанавливают по тем же критериям, однако вследствие их расположения при конъюгации не образуется петля, а одна хромосома оказывается короче другого. Примеры дефишенси известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром кошачьего крика, названное так по характеру звуков, издаваемых больными младенцами, обусловлено по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.

При отделении фрагмента хромосомы он, как правило, теряется, если не содержит центромеры. Фрагмент, содержащий центромеру, реплицируется и его копии нормально распределяются при клеточных делениях. Фрагменты хромосом не теряются и в случае диффузной центромеры. В этом случае могут возникнуть две телометрические хромосомы.

Большие возможности для выявления делеций, дефишенси и других хромосомных аберраций открывает методдифференциальной окраски хромосом. Он основан на том, что некоторые красители, например краситель Гимза, дифференциально окрашивают разные участки хромосом. Благодаря этому хромосомы приобретают характерную поперечную исчерченность. Таким методом определяют хромосомные перестройки в метафазных хромосомах [8].

Дупликации, в строгом смысле этого слова, представляют собой двукратное повторение одного и того же участка хромосомы. Известны случаи многократных повторений или мультипликаций какого-либо участка. Их также называют амплификациями.

Дупликации могут происходить в пределах одной и той же хромосомы или сопровождаться переносом копии участка генетического материала на другую хромосому. Дуплицированные участки часто образуют тандем (ABCBCDE…), т.е. расположенные друг за другом. Тандемная дупликация называется обращенной (илиинвертированной АВССВDE…), если последовательности генов в смежных участках взаимно противоположны. Если дуплицированный участок расположен на конце хромосомы, то дупликация называется концевой [8].

Дупликации могут обладать фенотипическим проявлением. Наиболее известным примером служит мутацияBar в Х-хромосоме Drosophila melanogaster. Эта мутация проявляет неполное доминирование, уменьшая число глазных фасеток.

Иногда дупликации выявляются благодаря тому, что у особи, гомозиготной по рецессивному аллелю, рецессивный признак, тем не менее, не проявляется. Этот факт объясняется тем, что соответствующий доминантный аллель содержится в дуплицированном участке хромосомы. На цитологических препаратах гетерозиготность по дупликациям приводит к образованию петель, аналогичных возникающих у гетерозигот по делециям.

Многие дупликации и делеции могут возникать в результате разрывов хромосомы. Причиной разрывов могут служить ионизирующая радиация, действие некоторых химических веществ или вирусов. Разрывы могут также индуцироваться некоторыми особенностями строения и функционирования хромосом. Делеции и дупликации могут возникать и при неравном кроссинговере. Когда в соседних участках хромосомы оказываются похожие последовательности ДНК, то конъюгация гомологов может произойти неправильно. Кроссинговер в таких неправильно конъюгировавших участках хромосом приводит к образованию гамет с дупликацией или делецией. Именно этим способом в результате неравного кроссинговера возникают гемоглобины Lepore и анти-Lepore. К дупликации и делециям или транслокациям.

Дупликация сравнительно небольших участков ДНК, состояния из нескольких нуклеотидов, входящих в состав одного гена или соседних генов, происходит в процессе эволюции весьма часто [1].

Инверсией называют поворот на 180о отдельных участков хромосомы; при этом ни число хромосом, ни число генов в каждой хромосоме не меняются (Айала). Если последовательность генов в исходной хромосоме обозначить ABCDEF и инверсии подвергся участок BCD, то в новой хромосоме гены будут расположены в последовательности ADCBEF [1].

В зависимости от расположения концов (границ) перестройки по отношению к центромере инверсии делят на перицентрические, захватывающие центромеру, и включающие ее в инвертированный участок, ипарацентрические, не включающие центромеру в инвертированный участок.

Инверсии — это широко распространенный путь эволюционного преобразования генетического материала. Например, человек и шимпанзе отличаются по числу хромосом: у человека 2n = 46, а у шимпанзе 2n = 48.

Инверсия приводит к изменению сцепления генов, иной их линейной последовательности, нежели у исходной формы. Этот эффект можно обнаружить, если инверсия в гомозиготе не летальна. Рецессивная летальность часто сопутствует инверсиям как результат локализации точек разрывов в жизненно важных генах или как следствие эффекта положения.

Другое важное следствие инверсии — подавление кроссинговера, если инверсия находится в гетерозиготе. Это свойство инверсий широко используют при создании сбалансированных линий, гетерозиготных по летальным мутациям и не разрушаемых кроссинговером по нужной хромосоме.

У гетерозигот по инверсиям на цитологических препаратах обнаруживают характерные петли — результат конъюгации структурно измененной и нормальной хромосомы. Если на такой петле, т.е. в инвертированном участке, произойдет одиночный кроссинговер, то в случае парацентрической инверсии возникает одна хроматида с двумя центромерами, которые ее порвут при расхождении в анафазе. Образующийся также бесцентромерный фрагмент будет потерян. В результате из четырех гамет полноценными будут только две. Только они способны при оплодотворении дать жизнеспособные зиготы (рис. 7, А). При гетерозиготности по перицентрической инверсии кроссинговер не препятствует нормальному расхождению всех хроматид. Тем не менее полноценными вновь будут только два продукта мейоза из четырех, поскольку две хроматиды несут делеции некоторых генов.

В тоже время двойной кроссинговер у гетерозигот по инверсии может приводить к образованию вполне жизнеспособных гамет (рис. 7, Б).

Хромосома может нести не только одну инверсию, нои две неперекрывающиеся и две, перекрывающиеся полностью или частично. Гетерозиготность по таким сложным перестройкам также идентифицируется цитологически по характеру конъюгации хромосом [8].

Читайте также:  Синдром ранней реполяризации желудочков (СРРЖ)

Рис.7. ? Конъюгация хромосом и последствия одиночного (А) и

двойного (Б) кроссинговера при гетерозиготности по

Транслокации представляют собой реципрокный обмен участками негомологичных хромосом. Реципрокными транслокациями называется взаимный обмен участками между двумя негомологичными хромосомами (рис. 8). Если изобразить последовательности генов в исходных хромосомах как ABCDEF и GHIJKL, то в транслокационных хромосомах последовательностями генов могут быть, например, ABCDKL и GHIJEF. У гомозигот по этим транслокациям по сравнению с исходными хромосомами изменяется характер сцепления: гены, в исходных хромосомах не сцепленные, оказываются сцепленными, и наоборот. В приведенном примере гены KL оказываются сцепленными с генами ABCD и перестают быть сцепленными с генами GHIJ.

Рис. 8. ? Транслокации

В гетерозиготах по реципрокным транслокациям гены обеих транслоцированных хромосом ведут себя так, как если бы они принадлежали к одной группе сцепления, поскольку лишь гаметы, содержащие родительский набор хромосом, могут образовать жизнеспособные зиготы. Кроме того, у гетерозигот по транслокациям в окрестности точек разрыва хромосом кроссинговеры почти не происходят: взаимное расположение хромосом в виде креста, необходимое для конъюгации гомологичных участков в мейозе, препятствует конъюгации в окрестности точек разрыва хромосом, а это понижает частоту кроссинговера в этих районах.

На цитологических препаратах у гетерозигот по реципрокным транслокациям в профазе мейоза можно наблюдать характерную структуру — крест. Ее появление связано с тем, что гомологичные участки, оказавшиеся в разных хромосомах, притягиваются.

Вместо бивалентов, т.е. пар конъюгирующих хромосом, образуются квадриваленты, состоящие из четырех связанных хромосом, каждая из которых частично гомологична другим хромосомам группы. В диакинезе хиазмы «сползаются» от центромер к концам хромосом, и крест трансформируется в кольцо. Иногда хромосомы кольца переворачиваются и образуют фигуры типа восьмерки.

Гетерозиготы по транслокациям частично стерильны (обладают пониженной плодовитостью), поскольку в процессе мейоза продуцируют дефектные гаметы. У растений пыльцевые зерна, содержащие дупликации или делеции, обычно гибнут. У животных гаметы с делециями или транслокациями могут участвовать в оплодотворении, но образованные из них зиготы обычно погибают. Однако если дуплицированный или утраченный участок хромосомы мал, то потомство может быть и жизнеспособным [1].

Гетерозиготы по реципрокным транслокациям у животных встречаются редко, но широко распространены у растений. Характерный пример в этом отношении представляют различные виды ослинника — Oenoyhera.Например, у O. lamarkiana из 14 хромосом 12 вовлечены в реципрокные транслокации. Поэтому в мейозе у этого растения наблюдают один бивалент и мультивалент, включающий остальные 12 хромосом. У других видов ослинника число хромосом, образующих мультиваленты, варьирует, что отражает число реципрокных транслокаций.

Подобно инверсиям, транслокации обеспечивают изоляцию новых форм и способствуют дивергенции в пределах вида. Особый тип транслокаций, так называемые Робертсоновские транслокации, или слияния, приводит к изменению числа хромосом. Если две телометрические хромосомы сливаются в области центромеры, то образуется одна метацентрическая хромосома. Этот тип хромосомных перестроек получил свое название по имени исследователя У.Р. Робертсона, выяснившего механизм такого слияния [8].

Транспозиции представляют собой перемещение небольших участков генетического материала в пределах одной хромосомы или между разными хромосомами. Транспозиции происходят при участии особых подвижных илимигрирующих генетических элементов.

Впервые мигрирующие генетические элементы были описаны Б. Мак-Клинток в 1947 г. в связи с изучением хромосомных разрывов у кукурузы. Был обнаружен мигрирующий локус Ds (диссоциатор), в котором предпочтительно происходят разрывы хромосом. Сам по себе Ds не вызывает разрывов. Они появляются в этом локусе, если только в геноме присутствует другой мигрирующий элемент — Ac (активатор). Оба эти элемента могут теряться с частотой нескольких процентов в мейотическом потомстве или менять свою локализацию при метотических делениях. При этом Ds перемещается только в присутствии Ac [8].

Внедрение Ds в непосредственной близости или внутрь гена С, контролирующего окраску алейрона семян, приводило к инактивации гена С и тем самым гетерозиготные семена С/ с / с оказывались неокрашенными. В присутствии Ас диссоциатор (Ds) начинал перемещаться — иногда покидал локус С. В результате этого появлялись окрашенные пятна алейрона на неокрашенных семенах.

Только в 80-х годах благодаря успехам генной инженерии удалось выделить и исследовать Ac, Ds и некоторые другие мигрирующие элементы кукурузы. Оказалось, что Ds — это дефектный делетированный вариант Ас. Структура элемента Ас оказалась типичной для мигрирующих элементов, которые к этому времени были изучены прежде всего у бактерий, а также у дрозофилы и дрожжей Sacch. Cerevisiae [7, 8].

Позднее подвижные генетические элементы были обнаружены у других эукариотических организмов. Мутацияwhite — crimson (wc) у дрозофилы обладает теми же свойствами, что и инсерция IS1 E. coli. Было обнаружено, что она вызывает транспозицию гена white в аутосому. При этом происходят спонтанные делеции соседних генов Х-хромосомы, расположенных слева и справа от wc, аналогичные делециям, вызываемым элементом IS1.

У мух Megaselia scalaris обнаружен генетический элемент, получивший название sex realizer. Самцы гемизиготны по этому гену, у самок он отсутствует. Располагается такой определитель пола на конце одной из хромосом, превращая ее в половую. С частотой примерно 0,1% образуются спермии, у которых определитель пола переместился с исходной половой хромосомы на другую, которая при этом стала половой. Можно создать линии, в которых половыми являются разные негомологичные хромосомы.

Обнаружение подвижных генетических элементов как у прокариот, так и у эукариот свидетельствует о том, что их присутствие является общим свойством всех организмов. Возникает вопрос, обладают ли эти элементы полезными для организмов функциями. Одна из гипотез состоит в том, что они представляют собой «эгоистическую ДНК», обеспечивающую лишь свое собственное размножение без какой-либо сопутствующей пользы для своего носителя. Дополнительная нагрузка на метаболизм клетки может быть очень мала, и эгоистическая ДНК может сохранятся в таких организмах из-за своей способности реплицироваться быстрее, чем весь остальной геном [1].

Ссылка на основную публикацию
Холестерин и кофе можно ли пить кофе при повышенном холестерине
Кофе при холестерине Однозначного ответа у современных врачей, как связаны кофе и холестерин нет. Представители старой медицины однозначно считали, что...
Хеликобактер пилори анализ крови, норма, расшифровка
Анализ и норма хеликобактер пилори в крови в цифрах, антитела и лечение Диагностика хеликобактерной инфекции – сложный процесс, поскольку ни...
Хеликобактер пилори лечиться или нет ��‍��
Антибиотики при гастрите: перечень препаратов, инструкция по применению Гастрит – частое заболевание желудочно-кишечного тракта, которое может проявляться болью, дискомфортом, изжогой,...
Холестерин и стресс как влияет, витаминные добавки
Наши сосуды Лечение и профилактика заболеваний сосудов Химические процессы, которые происходят в организме человека под воздействием внешних факторов, отражаются на...
Adblock detector